- 转换 Leap Frame
- 使用 Pipeline 来转换 Leap Frame
- 使用 Pipeline 来转换 Leap Frame
转换 Leap Frame
无论是 MLeap 还是 Spark,Transformer 对于 Data Frame 的计算都是一种非常有用的抽象模型。让我们看看如何使用一个简单的 Transformer StringIndexer
来转换一帧 Data Frame。
// Create a StringIndexer that knows how to index the two strings
// In our leap frame
val stringIndexer = StringIndexer(
shape = NodeShape().withStandardInput("a_string").withStandardOutput("a_string_index"),
model = StringIndexerModel(Seq("Hello, MLeap!", "Another row")))
// Transform our leap frame using the StringIndexer transformer
val indices = (for(lf <- stringIndexer.transform(leapFrame);
lf2 <- lf.select("a_string_index")) yield {
lf2.dataset.map(_.getDouble(0))
}).get.toSeq
// Make sure our indexer did its job
assert(indices == Seq(0.0, 1.0))
使用 Pipeline 来转换 Leap Frame
上面的例子可能不是很有趣。当你使用 Leap Frame 和 Transformer 一起来构建一个包含从原始特征到某些预测算法在内的完整 Pipeline 时,它们的真正威力才开始体现。让我们构造一个 Pipeline,其先通过 String Indexer 来生成索引,并把索引传给 One Hot Encoder,而后执行线性回归算法。
// Create our one hot encoder
val oneHotEncoder = OneHotEncoder(shape = NodeShape.vector(1, 2,
inputCol = "a_string_index",
outputCol = "a_string_oh"),
model = OneHotEncoderModel(2, dropLast = false))
// Assemble some features together for use
// By our linear regression
val featureAssembler = VectorAssembler(
shape = NodeShape().withInput("input0", "a_string_oh").
withInput("input1", "a_double").withStandardOutput("features"),
model = VectorAssemblerModel(Seq(TensorShape(2), ScalarShape())))
// Create our linear regression
// It has two coefficients, as the one hot encoder
// Outputs vectors of size 2
val linearRegression = LinearRegression(shape = NodeShape.regression(3),
model = LinearRegressionModel(Vectors.dense(2.0, 3.0, 6.0), 23.5))
// Create a pipeline from all of our transformers
val pipeline = Pipeline(
shape = NodeShape(),
model = PipelineModel(Seq(stringIndexer, oneHotEncoder, featureAssembler, linearRegression)))
// Transform our leap frame using the pipeline
val predictions = (for(lf <- pipeline.transform(leapFrame);
lf2 <- lf.select("prediction")) yield {
lf2.dataset.map(_.getDouble(0))
}).get.toSeq
// Print our predictions
// > 365.70000000000005
// > 166.89999999999998
println(predictions.mkString("\n"))
这个任务体现了 MLeap 的意义在于执行我们通过 Spark、PySpark、Scikit-Learn 或者 Tensorflow 等机器学习框架训练得到的 Pipeline。